509 research outputs found

    Antimicrobial susceptibility of organisms causing community-acquired urinary tract infections in Gauteng Province, South Africa

    Get PDF
    Background. Patients with community-acquired urinary tract infections (UTIs) frequently present to healthcare facilities in South Africa (SA).Aim. To provide information on UTI aetiology and antimicrobial susceptibility of pathogens.Methods. We recruited women with UTI-related symptoms, who tested positive for .2 urine dipstick criteria (proteinuria, blood, leucocytes or nitrites) at 1 public and 5 private primary healthcare facilities in 2011. Demographic and clinical data were recorded and mid-stream urine (MSU) specimens were cultured. UTI pathogens were Gram-stained and identified to species level. Etest-based antimicrobial susceptibility testing was performed for amoxicillin/clavulanic acid, cefixime, cefuroxime,  ciprofloxacin, fosfomycin, levofloxacin, nitrofurantoin, norfloxacin and trimethoprim/sulphamethoxazole.Results. Of the 460 women recruited, 425 MSU samples were processed and 204 UTI pathogens were identified in 201 samples. Most pathogens were Gram-negative bacilli (GNB) (182; 89.2%) and 22 (10.8%) were Gram-positive cocci (GPC). Escherichia coli was the most frequent GNB (160; 79.6%), while Enterococcus faecalis was the predominant GPC (8; 4.0%). The UTI pathogens had similar susceptibility profiles for fosfomycin (95.5%; 95% confidence interval (CI) 92.6 - 98.4), the 3 fluoroquinolones (94.1%; 95% CI 90.8 - 97.4), nitrofurantoin (91.7%; 95% CI 87.8 - 95.6), cefuroxime (90.1%; 95% CI 86.0 - 94.3) and cefixime (88.2%; 95% CI 83.7 - 92.6). UTI pathogens were less susceptible to amoxicillin/clavulanic acid (82.8%; 95% CI 77.5 - 88.0) when compared with fluoroquinolones and fosfomycin. Trimethoprim/ sulphamethoxazole was the least efficacious antimicrobial agent (44.3% susceptible; 95% CI 37.4 - 51.2).Conclusion. This study provides relevant data for the empirical treatment of community-acquired UTIs in SA

    Mental rotation task of hands: differential influence number of rotational axes

    Get PDF
    Various studies on the hand laterality judgment task, using complex sets of stimuli, have shown that the judgments during this task are dependent on bodily constraints. More specific, these studies showed that reaction times are dependent on the participant’s posture or differ for hand pictures rotated away or toward the mid-sagittal plane (i.e., lateral or medial rotation, respectively). These findings point to the use of a cognitive embodied process referred to as motor imagery. We hypothesize that the number of axes of rotation of the displayed stimuli during the task is a critical factor for showing engagement in a mental rotation task, with an increased number of rotational axes leading to a facilitation of motor imagery. To test this hypothesis, we used a hand laterality judgment paradigm in which we manipulated the difficulty of the task via the manipulation of the number of rotational axes of the shown stimuli. Our results showed increased influence of bodily constraints for increasing number of axes of rotation. More specifically, for the stimulus set containing stimuli rotated over a single axis, no influence of biomechanical constraints was present. The stimulus sets containing stimuli rotated over more than one axes of rotation did induce the use of motor imagery, as a clear influence of bodily constraints on the reaction times was found. These findings extend and refine previous findings on motor imagery as our results show that engagement in motor imagery critically depends on the used number of axes of rotation of the stimulus set

    Eye Movement-Related Confounds in Neural Decoding of Visual Working Memory Representations

    Get PDF
    A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory (VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG decoding results from our originally planned analyses were confounded. In addition to the eye movement analyses, we also present the original analyses to highlight how these might have readily led to invalid conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-related confounds

    Seeds Buffering for Information Spreading Processes

    Full text link
    Seeding strategies for influence maximization in social networks have been studied for more than a decade. They have mainly relied on the activation of all resources (seeds) simultaneously in the beginning; yet, it has been shown that sequential seeding strategies are commonly better. This research focuses on studying sequential seeding with buffering, which is an extension to basic sequential seeding concept. The proposed method avoids choosing nodes that will be activated through the natural diffusion process, which is leading to better use of the budget for activating seed nodes in the social influence process. This approach was compared with sequential seeding without buffering and single stage seeding. The results on both real and artificial social networks confirm that the buffer-based consecutive seeding is a good trade-off between the final coverage and the time to reach it. It performs significantly better than its rivals for a fixed budget. The gain is obtained by dynamic rankings and the ability to detect network areas with nodes that are not yet activated and have high potential of activating their neighbours.Comment: Jankowski, J., Br\'odka, P., Michalski, R., & Kazienko, P. (2017, September). Seeds Buffering for Information Spreading Processes. In International Conference on Social Informatics (pp. 628-641). Springe

    Spatial dependency of action simulation

    Get PDF
    In this study, we investigated the spatial dependency of action simulation. From previous research in the field of single-cell recordings, grasping studies and from crossmodal extinction tasks, it is known that our surrounding space can be divided into a peripersonal space and extrapersonal space. These two spaces are functionally different at both the behavioral and neuronal level. The peripersonal space can be seen as an action space which is limited to the area in which we can grasp objects without moving the object or ourselves. The extrapersonal space is the space beyond the peripersonal space. Objects situated within peripersonal space are mapped onto an egocentric reference frame. This mapping is thought to be accomplished by action simulation. To provide direct evidence of the embodied nature of this simulated motor act, we performed two experiments, in which we used two mental rotation tasks, one with stimuli of hands and one with stimuli of graspable objects. Stimuli were presented in both peri- and extrapersonal space. The results showed increased reaction times for biomechanically difficult to adopt postures compared to more easy to adopt postures for both hand and graspable object stimuli. Importantly, this difference was only present for stimuli presented in peripersonal space but not for the stimuli presented in extrapersonal space. These results extend previous behavioral findings on the functional distinction between peripersonal- and extrapersonal space by providing direct evidence for the spatial dependency of the use of action simulation. Furthermore, these results strengthen the hypothesis that objects situated within the peripersonal space are mapped onto an egocentric reference frame by action simulation

    Effects of lower limb amputation on the mental rotation of feet

    Get PDF
    What happens to the mental representation of our body when the actual anatomy of our body changes? We asked 18 able-bodied controls, 18 patients with a lower limb amputation and a patient with rotationplasty to perform a laterality judgment task. They were shown illustrations of feet in different orientations which they had to classify as left or right limb. This laterality recognition task, originally introduced by Parsons in Cognit Psychol 19:178–241, (1987), is known to elicit implicit mental rotation of the subject’s own body part. However, it can also be solved by mental transformation of the visual stimuli. Despite the anatomical changes in the body periphery of the amputees and of the rotationplasty patient, no differences in their ability to identify illustrations of their affected versus contralateral limb were found, while the group of able-bodied controls showed clear laterality effects. These findings are discussed in the context of various strategies for mental rotation versus the maintenance of an intact prototypical body structural description

    Conceptual knowledge for understanding other’s actions is organized primarily around action goals

    Get PDF
    Semantic knowledge about objects entails both knowing how to grasp an object (grip-related knowledge) and what to do with an object (goal-related knowledge). Considerable evidence suggests a hierarchical organization in which specific hand-grips in action execution are most often selected to accomplish a remote action goal. The present study aimed to investigate whether a comparable hierarchical organization of semantic knowledge applies to the recognition of other’s object-directed actions as well. Correctness of either the Grip (hand grip applied to the object) or the Goal (end-location at which an object was directed) were manipulated independently in two experiments. In Experiment 1, subjects were required to attend selectively to either the correctness of the grip or the goal of the observed action. Subjects were faster when attending to the goal of the action and a strong interference of goal-violations was observed when subjects attended to the grip of the action. Importantly, observation of irrelevant goal- or grip-related violations interfered with making decisions about the correctness of the relevant dimension only when the relevant dimension was correct. In contrast, in Experiment 2, when subjects attended to an action-irrelevant stimulus dimension (i.e. orientation of the object), no interference of goal- or grip-related violations was found, ruling out the possibility that interference-effects result from perceptual differences between stimuli. These findings suggest that understanding the correctness of an action selectively recruits specialized, but interacting networks, processing the correctness of goal- and grip-specific information during action observation

    Task-Dependent Interaction between Parietal and Contralateral Primary Motor Cortex during Explicit versus Implicit Motor Imagery

    Get PDF
    Both mental rotation (MR) and motor imagery (MI) involve an internalization of movement within motor and parietal cortex. Transcranial magnetic stimulation (TMS) techniques allow for a task-dependent investigation of the interhemispheric interaction between these areas. We used image-guided dual-coil TMS to investigate interactions between right inferior parietal lobe (rIPL) and left primary motor cortex (M1) in 11 healthy participants. They performed MI (right index-thumb pinching in time with a 1 Hz metronome) or hand MR tasks, while motor evoked potentials (MEPs) were recorded from right first dorsal interosseous. At rest, rIPL conditioning 6 ms prior to M1 stimulation facilitated MEPs in all participants, whereas this facilitation was abolished during MR. While rIPL conditioning 12 ms prior to M1 stimulation had no effect on MEPs at rest, it suppressed corticomotor excitability during MI. These results support the idea that rIPL forms part of a distinct inhibitory network that may prevent unwanted movement during imagery tasks

    Reduced responsiveness is an essential feature of chronic fatigue syndrome: A fMRI study

    Get PDF
    BACKGROUND: Although the neural mechanism of chronic fatigue syndrome has been investigated by a number of researchers, it remains poorly understood. METHODS: Using functional magnetic resonance imaging, we studied brain responsiveness in 6 male chronic fatigue syndrome patients and in 7 age-matched male healthy volunteers. Responsiveness of auditory cortices to transient, short-lived, noise reduction was measured while subjects performed a fatigue-inducing continual visual search task. RESULTS: Responsiveness of the task-dependent brain regions was decreased after the fatigue-inducing task in the normal and chronic fatigue syndrome subjects and the decrement of the responsiveness was equivalent between the 2 groups. In contrast, during the fatigue-inducing period, although responsiveness of auditory cortices remained constant in the normal subjects, it was attenuated in the chronic fatigue syndrome patients. In addition, the rate of this attenuation was positively correlated with the subjective sensation of fatigue as measured using a fatigue visual analogue scale, immediately before the magnetic resonance imaging session. CONCLUSION: Chronic fatigue syndrome may be characterised by attenuation of the responsiveness to stimuli not directly related to the fatigue-inducing task

    Aging Affects the Mental Rotation of Left and Right Hands

    Get PDF
    BACKGROUND:Normal aging significantly influences motor and cognitive performance. Little is known about age-related changes in action simulation. Here, we investigated the influence of aging on implicit motor imagery. METHODOLOGY/PRINCIPAL FINDINGS:Twenty young (mean age: 23.9+/-2.8 years) and nineteen elderly (mean age: 78.3+/-4.5 years) subjects, all right-handed, were required to determine the laterality of hands presented in various positions. To do so, they mentally rotated their hands to match them with the hand-stimuli. We showed that: (1) elderly subjects were affected in their ability to implicitly simulate movements of the upper limbs, especially those requiring the largest amplitude of displacement and/or with strong biomechanical constraints; (2) this decline was greater for movements of the non-dominant arm than of the dominant arm. CONCLUSIONS/SIGNIFICANCE:These results extend recent findings showing age-related alterations of the explicit side of motor imagery. They suggest that a general decline in action simulation occurs with normal aging, in particular for the non-dominant side of the body
    corecore